Combinatorics of the PASEP partition function
نویسنده
چکیده
We consider a three-parameter PASEP model on N sites. A closed formula for the partition function was obtained analytically by Blythe et al. We give a new formula which generalizes the one of Blythe et al, and is proved in two combinatorial ways. Moreover the first proof can be adapted to give the moments of Al-Salam-Chihara polynomials. Résumé. Nous considérons un modèle de PASEP à trois paramètres sur N sites. Une formule close pour la fonction de partition a été obtenue analytiquement par Blythe et al. Nous donnons une formule qui généralise celle de Blythe et al, prouvée combinatoirement de deux manières diffèrentes. Par ailleurs la première preuve peut être adaptée de sorte à obtenir les moments des polynômes d’Al-Salam-Chihara.
منابع مشابه
Permutation Tableaux and the Asymmetric Exclusion Process
The partially asymmetric exclusion process (PASEP) is an important model from statistical mechanics which describes a system of interacting particles hopping left and right on a one-dimensional lattice of n sites. It is partially asymmetric in the sense that the probability of hopping left is q times the probability of hopping right. In this paper we prove a close connection between the PASEP m...
متن کاملCombinatorics of the Three-Parameter PASEP Partition Function
We consider a partially asymmetric exclusion process (PASEP) on a finite number of sites with open and directed boundary conditions. Its partition function was calculated by Blythe, Evans, Colaiori, and Essler. It is known to be a generating function of permutation tableaux by the combinatorial interpretation of Corteel and Williams. We prove bijectively two new combinatorial interpretations. T...
متن کاملA Markov Chain on Permutations which Projects to the PASEP
The partially asymmetric exclusion process (PASEP) is an important model from statistical mechanics which describes a system of interacting particles hopping left and right on a one-dimensional lattice of N sites. It is partially asymmetric in the sense that the probability of hopping left is q times the probability of hopping right. Additionally, particles may enter from the left with probabil...
متن کاملMatrix Ansatz, lattice paths and rook placements
We give two combinatorial interpretations of the Matrix Ansatz of the PASEP in terms of lattice paths and rook placements. This gives two (mostly) combinatorial proofs of a new enumeration formula for the partition function of the PASEP. Besides other interpretations, this formula gives the generating function for permutations of a given size with respect to the number of ascents and occurrence...
متن کاملar X iv : m at h / 06 02 10 9 v 3 [ m at h . C O ] 1 8 M ay 2 00 7 TABLEAUX COMBINATORICS FOR THE ASYMMETRICEXCLUSION PROCESS
The partially asymmetric exclusion process (PASEP) is an important model from statistical mechanics which describes a system of interacting particles hopping left and right on a one-dimensional lattice of n sites. It is partially asymmetric in the sense that the probability of hopping left is q times the probability of hopping right. Additionally, particles may enter from the left with probabil...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010